Práctica 8: Integración (segunda parte)

(Adaptada de las prácticas del Dr H. San Martín)

Profesor: Cecilia Jarne

Técnicas de integración

- 1. Encontrar las siguientes integrales:
 - (a) $\int \cos(2x+3)dx$ (b) $\int \sin(x)\cos(x)dx$ (c) $\int e^{5x}dx$
 - (d) $\int \frac{\ln(x)}{x} dx$ (e) $\int \tan(x) dx$ (f) $\int \frac{2x+3}{x^2+3x-1} dx$
 - (g) $\int \sin^3(x) \cos(x) dx$ (h) $\int \frac{x}{x+1} dx$ (i) $\int xe^{-x^2} dx$
 - (j) $\int x \cos(2x^2) dx$ (k) $\int \frac{\arctan(x)}{x^2+1} dx$ (l) $\int \sqrt[3]{9-x} dx$
 - (m) $\int \frac{t}{\sqrt{t^2+2}}$ (n) $\int t^3 \sqrt{1-t^2} dt$ (ñ) $\int \frac{1}{1+4s^2} ds$
- 2. Calcular las siguientes integrales definidas:
 - (a) $\int_{-1}^{1} \frac{x}{(2-x^2)^2} dx$.
 - (b) $\int_0^{\pi} e^{\sin(x)} \cos(x) dx$.
 - (c) $\int_0^1 e^x \ln(e^x + 1) dx$.
- 3. Encontrar las siguientes integrales:
 - (a) $\int x \operatorname{sen}(x)$ (b) $\int xe^{2x} dx$ (c) $\int x^2 e^{2x} dx$
 - (d) $\int x^3 \ln(x) dx$ (e) $\int \arccos(x) dx$ (f) $\int \arctan(x) dx$
 - (g) $\int x^3 \cos(x^2) dx$ (h) $\int x^2 \ln^2(x) dx$ (i) $\int x^3 e^{-x^2} dx$
 - (j) $\int x^5 \sqrt{1-x^2} dx$ (k) $\int \ln^2(x) dx$ (l) $\int x 3^{x^2} dx$
- 4. (a) Probar las siguientes identidades trigonométricas:

$$sen^{2}(x) = \frac{1 - \cos(2x)}{2} \text{ y } \cos^{2}(x) = \frac{1 + \cos(2x)}{2}.$$

Sugerencia: utilizar las identidades trigonométricas $1 = \text{sen}^2(x) + \cos^2(x)$ y $\cos(2x) = \cos^2(x) - \sin^2(x)$.

- (b) Calcular las siguientes integrales:
- (i) $\int \sin^2(x) dx$
- (ii) $\int \cos^2(x) dx$
- 5. Calcular $\int \sin^3(x) dx$.

Sugerencia: observar que

$$sen^{3}(x) = sen^{2}(x) sen(x) = (1 - cos^{2}(x)) sen(x) = sen(x) - cos^{2}(x) sen(x).$$

- 6. Encontrar las siguientes integrales:
 - (a) $\int \frac{1}{(x+1)(x-3)} dx$ (b) $\int \frac{x+2}{x^2+x} dx$ (c) $\int \frac{e^x}{e^{2x}-1} dx$
 - (d) $\int \frac{x^3}{x+3} dx$ (e) $\int \frac{x^3+x+1}{x^2+1} dx$ (f) $\int \frac{x}{(x-1)^2} dx$
 - (g) $\int \frac{x}{(x+1)(x+2)^2} dx$ (h) $\int \frac{1}{x^2(x+1)} dx$ (i) $\int \frac{1}{x^2+25} dx$
 - (j) $\int \frac{1}{x^2 2x + 5} dx$ (k) $\int \frac{x}{(x^2 + 1)(x^2 + 16)} dx$ (l) $\int \frac{1}{e^u + 1} du$
- 7. Sea $f:(1,\infty)\to\mathbb{R}$ una función tal que $f'(x)=\frac{1}{x\ln^3(x)}$. Determinar f sabiendo que $f(e)=\frac{1}{2}$.
- 8. Hallar las siguientes integrales:
 - (a) $\int \sin(\sqrt{x})dx$ (b) $\int x^2 \arctan(x)dx$ (c) $\int x^3 e^{-x^2}dx$
 - (d) $\int x e^{-\sqrt{x}} dx$ (e) $\int \sqrt{x} e^{-\sqrt{x}}$ (f) $\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{1+\sin^2(x)} dx$
 - (g) $\int \frac{x}{\sqrt{1-x^4}} dx$ (h) $\int \frac{\cos(\sqrt[3]{x})}{\sqrt[3]{x^2}} dx$ (i) $\int \frac{\ln(\ln(x))}{x} dx$
 - (j) $\int \frac{\ln(x)\ln(\ln(x))}{x} dx$ (k) $\int e^{2x}\cos(e^x)dx$ (l) $\int \frac{x}{e^x}dx$.

Sólidos de revolución

Sea f una función continua en un intervalo cerrado [a,b] y supongamos que $f(x) \geq 0$ en este intervalo. Si hacemos rotar la curva y = f(x) alrededor del eje x, obtendremos un sólido cuyo volumen V se puede calcular por la fórmula

$$V = \pi \int_{a}^{b} f(x)^{2} dx.$$

9. Probar que el volumen de una esfera de radio r está dado por la fórmula $V=\frac{4}{3}\pi r^3$

Sugerencia: girar una semicircunferencia de radio r respecto a un eje coordenado. Recordar que la ecuación de la circunferencia de radio r centrada en el origen está dada por la fórmula $x^2 + y^2 = r^2$; en particular si consideramos la semicircunferencia que se halla sobre el eje de las x entonces tenemos que $y = \sqrt{r^2 - x^2}$, donde x pertenece al intervalo [-r, r].

- 10. Rotando una recta que pase por el origen alrededor del eje x, probar que el volumen de un cono de altura h y radio de la base r está dado por la fórmula $V=\frac{\pi}{3}r^2h$.
- 11. Encontrar el volumen de revolución obtenido al rotar la curva dada por

$$y = \frac{1}{x^2}$$

alrededor del eje x, entre x=2 y x=B, para cualquier número B>2. ¿Tiende este volumen hacia algún límite cuando $B\to\infty$? Si es así, ¿cuál es el límite? Interpretar geométricamente la situación.

2