

Catalog nos. V790-20 and V795-20

Version K 10 November 2010 28-0104

User Manual

Table of Contents

	Important Information	v
	Accessory Products	vi
Ме	thods	1
	Overview	1
	Cloning into pcDNA TM 3.1	2
	Transfection	6
	Creating Stable Cell Lines	7
Ар	pendix	10
	pcDNA TM 3.1 Vectors	10
	pcDNA TM 3.1/CAT	12
	Technical Support	13
	Purchaser Notification	13
	References	15

Important Information

pcDNA [™] Vectors	This manual is supplied	d with the followi	ng products.	
	Produ	ct	Catalog no.	
	pcDNA [™] 3.1(+) Vector		V790-20	
	pcDNA [™] 3.1(–) Vector		V795-20	
Shipping and Storage	Vectors are shipped on –20°C.	wet ice. Upon rec	eipt, store at	
Contents	The pcDNA [™] 3.1 vector	components pcD	NA [™] 3.1 are listed below	:
	Item	C	oncentration	Volume
	pcDNA [™] 3.1 Vector	.0	μl, in TE buffer, pH 8.0	40 µl
	pcDNA [™] 3.1(+) or pcDNA [™] 3.1(–)	(10 mM Tris-HCl, 1 mM EDTA, pH 8.0)		
	Control Plasmid pcDNA [™] 3.1/CAT		µl, in TE buffer, pH 8.0 Cl, 1 mM EDTA, pH 8.0)	40 µl
Product Qualification	product. Certificates of	Analysis are avai support and searc	iled quality control info able on our website. Go h for the Certificate of A	o to

Accessory Products

Additional Products

Additional products that may be used with the pcDNA[™]3.1 vectors are available from Invitrogen. Ordering information is provided below.

Product	Amount	Catalog no.
One Shot [®] TOP10 Chemically	10 reactions	C4040-10
Competent Cells	20 reactions	C4040-03
One Shot [®] TOP10F' Chemically	20 reactions	C3030-03
Competent Cells	40 reactions	C3030-06
Lipofectamine [™] 2000	1.5 ml	11668-019
	0.75 ml	11668-027
Geneticin [®]	1 g	11811-023
	5 g	11811-031
PureLink™ HQ Mini Plasmid Purification Kit	100 preps	K2100-01
PureLink™ HiPure Plasmid Midiprep Kit	25 preps	K2100-04

Methods Overview

Outline

Description pcDNA[™]3.1(+) and pcDNA[™]3.1(-) are 5.4 kb vectors derived from pcDNA[™]3 and designed for high-level stable and transient expression in mammalian hosts. High-level stable and non-replicative transient expression can be carried out in most mammalian cells. The vectors contain the following elements:

- Human cytomegalovirus immediate-early (CMV) promoter for high-level expression in a wide range of mammalian cells
- Multiple cloning sites in the forward (+) and reverse (-) orientations to facilitate cloning
- Neomycin resistance gene for selection of stable cell lines
- Episomal replication in cells lines that are latently infected with SV40 or that express the SV40 large T antigen (e.g. COS-1, COS-7)

The control plasmid, pcDNA[™]3.1/CAT, is included for use as a positive control for transfection and expression in the cell line of choice.

Experimental Use the following outline to clone and express your gene of interest in pcDNA[™]3.1.

- 1. Consult the multiple cloning sites described on pages 3-4 to design a strategy to clone your gene into pcDNA[™]3.1.
- 2. Ligate your insert into the appropriate vector and transform into *E. coli*. Select transformants on LB plates containing 50–100 µg/ml ampicillin.
- 3. Analyze your transformants for the presence of insert by restriction digestion.
- 4. Select a transformant with the correct restriction pattern and use sequencing to confirm that your gene is cloned in the proper orientation.
- 5. Transfect your construct into the mammalian cell line of interest using your own method of choice. Generate a stable cell line, if desired.
- 6. Test for expression of your recombinant gene by western blot analysis or functional assay.

Cloning into pcDNA™3.1

Introduction	Diagrams are provided on pages 3-4 to help you design a cloning strategy for ligating your gene of interest into pcDNA [™] 3.1. General considerations for cloning and transformation are listed below.
General Molecular Biology Techniques	For help with DNA ligations, <i>E. coli</i> transformations, restriction enzyme analysis, purification of single-stranded DNA, DNA sequencing, and DNA biochemistry, please refer to <i>Molecular Cloning: A Laboratory Manual</i> (Sambrook <i>et al.</i> , 1989) or <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).
<i>E. coli</i> Strain	Many <i>E. coli</i> strains are suitable for the propagation of this vector including TOP10F', DH5 $^{\text{TM}}$ -T1 ^R , and TOP10. We recommend that you propagate vectors containing inserts in <i>E. coli</i> strains that are recombination deficient (<i>rec</i> A) and endonuclease A-deficient (<i>end</i> A).
Note	If you wish to express a human gene of interest from pcDNA [™] 3.1, we recommend using an Ultimate [™] Human ORF (hORF) Clone available from Invitrogen. For more information about the Ultimate [™] hORF Clones available, refer to our Web site (<u>www.invitrogen.com</u>) or contact Technical Support (page 13).
Transformation Method	You may use any method of your choice for transformation. Chemical transformation is the most convenient for most researchers. Electroporation is the most efficient and the method of choice for large plasmids.
Maintenance of pcDNA [™] 3.1	To propagate and maintain pcDNA ^{m} 3.1, use 10 ng of vector to transform a <i>recA</i> , <i>endA E. coli</i> strain like TOP10F ^{r} , DH5 ^{m} -T1 ^{R} , TOP10, or equivalent. Select transformants on LB plates containing 50–100 µg/ml ampicillin. Be sure to prepare a glycerol stock of your plasmid-containing <i>E. coli</i> strain for long-term storage (see page 5).
Cloning Considerations	pcDNA [™] 3.1(+) and pcDNA [™] 3.1(–) are non-fusion vectors. Your insert should contain a Kozak translation initiation sequence with an ATG initiation codon for proper initiation of translation (Kozak, 1987; Kozak, 1991; Kozak, 1990). An example of a Kozak consensus sequence is provided below. Other sequences are possible, but the G or A at position –3 and the G at position +4 (shown in bold) illustrates the most commonly occurring sequence with strong consensus. Replacing one of the two bases at these positions provides moderate consensus, while having neither results in weak consensus. The ATG initiation codon is shown underlined.
	(G/A)NN <u>ATG</u> G
	Your insert must also contain a stop codon for proper termination of your gene. Please note that the <i>Xba</i> I site contains an internal stop codon (TC <u>TAG</u> A).

Cloning into pcDNA[™]3.1, continued

Multiple Cloning Site of pcDNA[™]3.1(+)

Below is the multiple cloning site for pcDNA^M3.1(+). Restriction sites are labeled to indicate the cleavage site. The *Xba* I site contains an internal stop codon (TC<u>TAG</u>A). The multiple cloning site has been confirmed by sequencing and functional testing. **The complete sequence of pcDNA^M3.1(+) is available for downloading from our web site (www.invitrogen.com) or from Technical Support (see page 13).** For a map and a description of the features of pcDNA^M3.1(+), please refer to the **Appendix**, pages 10-11.

		enhancer	region (3' end)			
689	CATTGACGTC	AATGGGAGTT	TGTTTTGGCA	CCAAAATCAA	CGGGACTTTC	CAAAATGTCG
			CAAT			TATA
749	TAACAACTCC	GCCCCATTGA	CGCAAATGGG	CGGTAGGCGT	GTACGGTGGG	AGGTCTATAT
	3' end of l	hCMV	putative tran	scriptional start		
809	AAGCAGAGCT	CTCTGGCTAA	CTAGAGAACC	CACTGCTTAC	TGGCTTATCG	AAATTAATAC
Т	7 promoter/primer bi	nding site	Nhe I	Pme I Afl	II Hind III Asp718	I Kpn I
869	GACTCACTAT	AGGGAGACCC	AAGCTGGCTA	GCGTTTAAAC	TTAAGCTTGG	TACCGAGCTC
1	BamH I	Bst	KI* EcoRI	EcoR V	BstX I*	Not I Xho I
1 929	BamH I GGATCCACTA	Bst) GTCCAGTGTG	KI* <i>Eco</i> RI J GTGGAATTCT	<i>Eco</i> R V I GCAGATATCC	<i>Bst</i> X I* I Agcacagtgg	Not I Xho I I I CGGCCGCTCG
-	1		I Î	GCAGATATCC		CGGCCGCTCG
-	GGATCCACTA	GTCCAGTGTG	I Î	GCAGATATCC	AGCACAGTGG	CGGCCGCTCG
929	GGATCCACTA Xba I	GTCCAGTGTG Apa I Pme I	GTGGAATTCT	GCAGATATCC pcDNA3.1/B	AGCACAGTGG GH reverse priming TGTGCCTTCT	CGGCCGCTCG
929 989	GGATCCACTA Xba I AGTC <u>TAG</u> AGG CATCTGTTGT	GTCCAGTGTG Apa I Pme I GCCCGTTTAA	GTGGAATTCT	GCAGATATCC pcDNA3.1/B CAGCCTCGAC	AGCACAGTGG GH reverse priming TGTGCCTTCT	CGGCCGCTCG site AGTTGCCAGC

*Please note that there are two *BstX* I sites in the polylinker.

Cloning into pcDNA[™]3.1, continued

Multiple Cloning Site of pcDNA[™]3.1(–)

Below is the multiple cloning site for pcDNA[™]3.1(–). Restriction sites are labeled to indicate the cleavage site. The *Xba* I site contains an internal stop codon (TC<u>TAG</u>A). The multiple cloning site has been confirmed by sequencing and functional testing. **The complete sequence of pcDNA[™]3.1(–) is available for downloading from our web site (**<u>www.invitrogen.com</u>**) or from Technical Support (see page 13).** For a map and a description of the features of pcDNA[™]3.1(–), please see the **Appendix**, pages 10-11.

enhancer region (3' end)						
689	CATTGACGTC	AATGGGAGTT	TGTTTTGGCA	CCAAAATCAA	CGGGACTTTC	CAAAATGTCG
			CAAT			TATA
749	TAACAACTCC	GCCCCATTGA	CGCAAATGGG	CGGTAGGCGT	GTACGGTGGG	AGGTCTATAT
	3' end of	hCMV	putative tran	scriptional start		
809	AAGCAGAGCT	CTCTGGCTAA	CTAGAGAACC	CACTGCTTAC	TGGCTTATCG	AAATTAATAC
Τ7	promoter/primer bit	nding site	Nhe I	Pme I	Apa I Xba I	Xho I Not I
869	GACTCACTAT	AGGGAGACCC	AAGCTGGCTA	GCGTTTAAAC	GGGCCCTCTA	GACTCGAGCG
		BstX I* EcoR V	EcoR I	BstX I*	Ban	ıH I
929	GCCGCCACTG	BstX I* EcoR V	<i>Eco</i> R I CTGCAGAATT		<u>ت</u> ے	HI ATCCGAGCTC
	GCCGCCACTG p7181 Kpn1Hind	I I TGCTGGATAT	تے .	CCACCACACT	<u>ت</u> ے	ATCCGAGCTC
		I I TGCTGGATAT	تے .	CCACCACACT	GGACTAGTGG	ATCCGAGCTC
Asp		I I TGCTGGATAT	CTGCAGAATT	CCACCACACT	GGACTAGTGG	ATCCGAGCTC e
Asp		I I TGCTGGATAT	CTGCAGAATT	CCACCACACT	GGACTAGTGG	ATCCGAGCTC e GTTGCCAGCC
Asp 989	0718 I <i>Kpn</i> I Hind GGTACCAAGC ATCTGTTGTT	TGCTGGATAT	CTGCAGAATT ACCGCTGATC	CCACCACACT pcDNA3.1/BGH AGCCTCGACT	GGACTAGTGG reverse priming site GTGCCTTCTA	ATCCGAGCTC e GTTGCCAGCC

*Please note that there are two *BstX* I sites in the polylinker.

Cloning into pcDNA[™]3.1, continued

Transfection

Introduction	Once you have verified that your gene is cloned in the correct orientation and contains an initiation ATG and a stop codon, you are ready to transfect your cell line of choice. We recommend that you include the positive control vector and a mock transfection (negative control) to evaluate your results.
Plasmid Preparation	Once you have generated your expression clone, you must isolate plasmid DNA for transfection. Plasmid DNA for transfection into eukaryotic cells must be clean and free contamination with from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using the PureLink [™] HQ Mini Plasmid Purification Kit (Catalog no. K2100-01), the PureLink [™] HiPure Plasmid Midiprep Kit (Catalog no. K2100-04), or CsCl gradient centrifugation.
Methods of Transfection	For established cell lines (<i>e.g.</i> HeLa), consult original references or the supplier of your cell line for the optimal method of transfection. We recommend that you follow exactly the protocol for your cell line. Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in <i>Current Protocols in Molecular Biology</i> (Ausubel <i>et al.</i> , 1994).
	Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler <i>et al.</i> , 1977), lipid-mediated (Felgner <i>et al.</i> , 1989; Felgner and Ringold, 1989) and electroporation (Chu <i>et al.</i> , 1987; Shigekawa and Dower, 1988). For high efficiency transfection in a broad range of mammalian cell lines, we recommend using Lipofectamine [™] 2000 Reagent (Catalog no. 11668-027) available from Invitrogen. For more information about Lipofectamine [™] 2000 and other transfection reagents, refer to our Web site (<u>www.invitrogen.com</u>) or contact Technical Support (page 13).
Positive Control	pcDNA [™] 3.1/CAT is provided as a positive control vector for mammalian transfection and expression (see page 12) and may be used to optimize transfection conditions for your cell line. The gene encoding chloramphenicol acetyl transferase (CAT) is expressed in mammalian cells under the control of the CMV promoter. A successful transfection will result in CAT expression that can be easily assayed (see below).
Assay for CAT Protein	You may assay for CAT expression by ELISA assay, western blot analysis, fluorometric assay, or radioactive assay (Ausubel <i>et al.</i> , 1994; Neumann <i>et al.</i> , 1987). If you wish to detect CAT protein using western blot analysis, you may use the Anti-CAT Antiserum (Catalog no. R902-25) available from Invitrogen. Other kits to assay for CAT protein using ELISA assay are available from Roche Molecular Biochemicals (Catalog no. 1 363 727) and Molecular Probes (Catalog no. F-2900).

Creating Stable Cell Lines

Introduction The pcDNA[™]3.1(+) and pcDNA[™]3.1(–) vectors contain the neomycin resistance gene for selection of stable cell lines using neomycin (Geneticin®). We recommend that you test the sensitivity of your mammalian host cell to Geneticin[®] as natural resistance varies among cell lines. General information and guidelines are provided in this section for your convenience. To obtain stable transfectants, we recommend that you linearize your pcDNA[™]3.1 construct before transfection. While linearizing the vector may not improve the efficiency of transfection, it increases the chances that the vector does not integrate in a way that disrupts elements necessary for expression in mammalian cells. To linearize your construct, cut at a unique site that is not located within a critical element or within your gene of interest. Geneticin® Geneticin[®] blocks protein synthesis in mammalian cells by interfering with ribosomal function. It is an aminoglycoside, similar in structure to neomycin, gentamycin, and kanamycin. Expression in mammalian cells of the bacterial aminoglycoside phosphotransferase gene (APH), derived from Tn5, results in detoxification of Geneticin[®] (Southern and Berg, 1982). To successfully generate a stable cell line expressing your protein of interest, you need Determining to determine the minimum concentration of Geneticin® required to kill your Antibiotic untransfected host cell line. Test a range of concentrations (see protocol below) to Sensitivity ensure that you determine the minimum concentration necessary for your cell line. 1. Plate or split a confluent plate so the cells will be approximately 25% confluent. Prepare a set of 6–7 plates. Add the following concentrations of antibiotic to each plate: • For Geneticin[®] selection, test 0, 50, 125, 250, 500, 750, and 1000 μg/ml Geneticin[®]. 2. Replenish the selective media every 3–4 days, and observe the percentage of surviving cells. 3. Count the number of viable cells at regular intervals to determine the appropriate concentration of antibiotic that prevents growth within 1-3 weeks after addition of the antibiotic. Geneticin® Once you have determined the appropriate Geneticin[®] concentration to use for Selection selection, you can generate a stable cell line expressing your pcDNA[™]3.1 construct. Guidelines Geneticin[®] is available separately from Invitrogen (see page vi for ordering information). Use as follows: 1. Prepare Geneticin[®] in a buffered solution (*e.g.* 100 mM HEPES, pH 7.3). 2. Use the predetermined concentration of Geneticin[®] in complete medium. 3. Calculate concentration based on the amount of active drug. 4. Cells will divide once or twice in the presence of lethal doses of Geneticin[®], so the effects of the drug take several days to become apparent. Complete selection can take from 2 to 3 weeks of growth in selective medium.

Creating Stable Cell Lines, continued

Possible Sites for Linearization of pcDNA3.1(+)

Prior to transfection, we recommend that you linearize the pcDNATM3.1(+) vector. Linearizing pcDNATM3.1(+) will decrease the likelihood of the vector integrating into the genome in a way that disrupts the gene of interest or other elements required for expression in mammalian cells. The table below lists unique restriction sites that may be used to linearize your construct prior to transfection. **Other unique restriction sites are possible.** Be sure that your insert does not contain the restriction enzyme site you wish to use to linearize your vector.

Enzyme	Restriction Site (bp)	Location	Supplier
Bgl II	12	Upstream of CMV promoter	Invitrogen, Catalog no. 15213-028
Mfe I	161	Upstream of CMV promoter	New England Biolabs
Bst1107 I	3236	End of SV40 polyA	AGS [*] , Fermentas, Takara, Roche Mol. Biochemicals
<i>Eam</i> 1105 I	4505	Ampicillin gene	AGS [*] , Fermentas, Takara
Pvu I	4875	Ampicillin gene	Invitrogen, Catalog no. 25420-019
Sca I	4985	Ampicillin gene	Invitrogen, Catalog no. 15436-017
Ssp I	5309	bla promoter	Invitrogen, Catalog no. 15458-011

*Angewandte Gentechnologie Systeme

Possible Sites for Linearization of pcDNA[™]3.1(–)

The table below lists unique restriction sites that may be used to linearize your pcDNA[™]3.1(–) construct prior to transfection. **Other unique restriction sites are possible.** Be sure that your insert does not contain the restriction enzyme site you wish to use to linearize your vector.

Enzyme	Restriction Site (bp)	Location	Supplier
Bgl II	12	Upstream of CMV promoter	Invitrogen, Catalog no. 15213-028
Mfe I	161	Upstream of CMV promoter	New England Biolabs
<i>Bst</i> 1107 I	3235	End of SV40 polyA	AGS [*] , Fermentas, Takara, Roche Mol. Biochemicals
<i>Eam</i> 1105 I	4504	Ampicillin gene	AGS [*] , Fermentas, Takara
Pvu I	4874	Ampicillin gene	Invitrogen, Catalog no. 25420-019
Sca I	4984	Ampicillin gene	Invitrogen, Catalog no. 15436-017
Ssp I	5308	bla promoter	Invitrogen, Catalog no. 15458-011

*Angewandte Gentechnologie Systeme

Creating Stable Cell Lines, continued

more than 25% confluent.

Selection of Stable	Once you have determined the appropriate Geneticin [®] concentration to use for selection in your host cell line, you can generate a stable cell line expressing your gene of interest.
Integrants	1. Transfect your mammalian host cell line with your pcDNA [™] 3.1 construct using the desired protocol. Remember to include a plate of untransfected cells as a negative control and the pcDNA [™] 3.1/CAT plasmid as a positive control.
	2. 24 hours after transfection, wash the cells and add fresh medium to the cells.
	3. 48 hours after transfection, split the cells into fresh medium containing Geneticin [®] at the pre- determined concentration required for your cell line. Split the cells such that they are no

- 4. Feed the cells with selective medium every 3–4 days until Geneticin[®]-resistant foci can be identified.
- 5. Pick and expand colonies in 96- or 48-well plates.

Appendix pcDNA[™]3.1 Vectors

Мар

The figure below summarizes the features of the pcDNA[™]3.1(+) and pcDNA[™]3.1(-) vectors. The complete sequences for pcDNA[™]3.1(+) and pcDNA[™]3.1(-) are available for down-loading from our World Wide Web site (www.invitrogen.com) or from Technical Support (see page 13). Details of the multiple cloning sites are shown on page 3 for pcDNA[™]3.1(+) and page 4 for pcDNA[™]3.1(-).

pcDNA[™]3.1 Vectors, continued

Features pcDNA[™]3.1(+) (5428 bp) and pcDNA[™]3.1(-) (5427 bp) contain the following elements. All features have been functionally tested.

Feature	Benefit
Human cytomegalovirus (CMV) immediate-early promoter/ enhancer	Permits efficient, high-level expression of your recombinant protein (Andersson <i>et al.</i> , 1989; Boshart <i>et al.</i> , 1985; Nelson <i>et al.</i> , 1987)
T7 promoter/priming site	Allows for <i>in vitro</i> transcription in the sense orientation and sequencing through the insert
Multiple cloning site in forward or reverse orientation	Allows insertion of your gene and facilitates cloning
Bovine growth hormone (BGH) polyadenylation signal	Efficient transcription termination and polyadenylation of mRNA (Goodwin and Rottman, 1992)
f1 origin	Allows rescue of single-stranded DNA
SV40 early promoter and origin	Allows efficient, high-level expression of the neomycin resistance gene and episomal replication in cells expressing SV40 large T antigen
Neomycin resistance gene	Selection of stable transfectants in mammalian cells (Southern and Berg, 1982)
SV40 early polyadenylation signal	Efficient transcription termination and polyadenylation of mRNA
pUC origin	High-copy number replication and growth in <i>E. coli</i>
Ampicillin resistance gene	Selection of vector in <i>E. coli</i>
(β-lactamase)	
Ampicillin (<i>bla</i>) resistance gene (β-lactamase)	Allows selection of transformants in <i>E. coli</i>

pcDNA[™]3.1/CAT

Description $pcDNA^{M}3.1/CAT$ is a 6217 bp control vector containing the gene for CAT. It was constructed by digesting $pcDNA^{M}3.1(+)$ with *Xho* I and *Xba* I and treating with Klenow. An 800 bp *Hind* III fragment containing the CAT gene was treated with Klenow and then ligated into $pcDNA^{M}3.1(+)$.

MapThe figure below summarizes the features of the pcDNA[™]3.1/CAT vector. The
complete nucleotide sequence for pcDNA[™]3.1/CAT is available for downloading
from our World Wide Web site (www.invitrogen.com) or by contacting Technical
Support (see page 13).

Technical Support

World Wide Web	 Technical resources MSDSs, FAQs, form Complete technical Access to the Invitre 	site at <u>www.invitrogen.com</u> for: , including manuals, vector maps and nulations, citations, handbooks, etc. support contact information ogen Online Catalog rmation and special offers	sequences, application notes,
Contact Us		technical assistance, call, write, fax, or Neb page (<u>www.invitrogen.com</u>).	email. Additional international
	Corporate Headquarters: Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 USA Tel: 1 760 603 7200 Tel (Toll Free): 1 800 955 6288 Fax: 1 760 602 6500 E-mail: tech support@invitrogen.	Japanese Headquarters: Invitrogen Japan K.K. Nihonbashi Hama-Cho Park Bldg. 4F 2-35-4, Hama-Cho, Nihonbashi Tel: 81 3 3663 7972 Fax: 81 3 3663 8242 com E-mail: jpinfo@invitrogen.com	European Headquarters: Invitrogen Ltd Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK Tel: +44 (0) 141 814 6100 Tech Fax: +44 (0) 141 814 6117 E-mail: <u>eurotech@invitrogen.com</u>
MSDS	Material Safety Data Sho www.invitrogen.com/n	eets (MSDSs) are available on our web <u>nsds</u> .	site at
Certificate Analysis	product. CofAs are avai	sis (CofA) provides detailed quality co lable on our website at <u>www.invitroge</u> ot number, which is printed on each bo	en.com/support, and are
Limited Warranty	ensure that every customer questions or concerns abou Invitrogen warrants that all analysis. The company will <u>warranty limits Invitrogen</u> products beyond their liste- stored in accordance with in product unless Invitrogen a Invitrogen makes every effet typographical or other erro contents of any publication report it to our Technical Su Invitrogen assumes no res or damage whatsoever. Th	providing our customers with high-quality is 100% satisfied with our products and ou t an Invitrogen product or service, contact of of its products will perform according to s replace, free of charge, any product that de <u>Corporation's liability only to the cost of th</u> d expiration date. No warranty is applicable nstructions. Invitrogen reserves the right to agrees to a specified method in writing prio port to ensure the accuracy of its publications r is inevitable. Therefore Invitrogen makes s or documentation. If you discover an error upport Representatives. ponsibility or liability for any special, inci- e above limited warranty is sole and exclu- ied, including any warranty of merchanta	rr service. If you should have any our Technical Support Representatives. specifications stated on the certificate of bes not meet those specifications. <u>This the product</u> . No warranty is granted for e unless all product components are o select the method(s) used to analyze a or to acceptance of the order. s, but realizes that the occasional no warranty of any kind regarding the or in any of our publications, please idental, indirect or consequential loss usive. No other warranty is made,

Purchaser Notification

Introduction

Limited Use Label License No. 5: Invitrogen Technology The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For products that are subject to multiple limited use label licenses, the terms of the most restrictive limited use label license shall control. Life Technologies Corporation will not assert a claim against the buyer of infringement of patents owned or controlled by Life Technologies Corporation which cover this product based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information about purchasing a license to use this product or the technology embedded in it for any use other than for research use please contact Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008; Phone (760) 603-7200 or e-mail: outlicensing@lifetech.com.

References

Andersson, S., Davis, D. L., Dahlbäck, H., Jörnvall, H., and Russell, D. W. (1989). Cloning, Structure, and Expression of the Mitochondrial Cytochrome P-450 Sterol 26-Hydroxylase, a Bile Acid Biosynthetic Enzyme. J. Biol. Chem. 264, 8222-8229.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience).

Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985). A Very Strong Enhancer is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus. Cell *41*, 521-530.

Chen, C., and Okayama, H. (1987). High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Mol. Cell. Biol. 7, 2745-2752.

Chu, G., Hayakawa, H., and Berg, P. (1987). Electroporation for the Efficient Transfection of Mammalian Cells with DNA. Nuc. Acids Res. *15*, 1311-1326.

Felgner, P. L., Holm, M., and Chan, H. (1989). Cationic Liposome Mediated Transfection. Proc. West. Pharmacol. Soc. 32, 115-121.

Felgner, P. L., and Ringold, G. M. (1989). Cationic Liposome-Mediated Transfection. Nature 337, 387-388.

Goodwin, E. C., and Rottman, F. M. (1992). The 3'-Flanking Sequence of the Bovine Growth Hormone Gene Contains Novel Elements Required for Efficient and Accurate Polyadenylation. J. Biol. Chem. 267, 16330-16334.

Kozak, M. (1987). An Analysis of 5'-Noncoding Sequences from 699 Vertebrate Messenger RNAs. Nuc. Acids Res. *15*, 8125-8148.

Kozak, M. (1991). An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control. J. Cell Biol. *115*, 887-903.

Kozak, M. (1990). Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA *87*, 8301-8305.

Nelson, J. A., Reynolds-Kohler, C., and Smith, B. A. (1987). Negative and Positive Regulation by a Short Segment in the 5'-Flanking Region of the Human Cytomegalovirus Major Immediate-Early Gene. Mol. Cell. Biol. 7, 4125-4129.

Neumann, J. R., Morency, C. A., and Russian, K. O. (1987). A Novel Rapid Assay for Chloramphenicol Acetyltransferase Gene Expression. BioTechniques *5*, 444-447.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Plainview, New York: Cold Spring Harbor Laboratory Press).

Shigekawa, K., and Dower, W. J. (1988). Electroporation of Eukaryotes and Prokaryotes: A General Approach to the Introduction of Macromolecules into Cells. BioTechniques *6*, 742-751.

Southern, P. J., and Berg, P. (1982). Transformation of Mammalian Cells to Antibiotic Resistance with a Bacterial Gene Under Control of the SV40 Early Region Promoter. J. Molec. Appl. Gen. 1, 327-339.

Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977). Transfer of Purified Herpes Virus Thymidine Kinase Gene to Cultured Mouse Cells. Cell *11*, 223-232.

^{©1997-2008, 2010} Invitrogen Corporation. All rights reserved.

For research use only. Not intended for any animal of human therapeutic or diagnostic use.

invitrogen®

Corporate Headquarters Invitrogen Corporation 5791 Van Allen Way Carlsbad, CA 92008 T: 1 760 603 7200 F: 1 760 602 6500 E: tech_support@invitrogen.com

For country-specific contact information, visit our web site at www.invitrogen.com