Fourier 1-norm and quantum speed-up

Sebastián Alberto Grillo

Universidad Autónoma de Asunción

sgrillo@uaa.com

August 19, 2019

Sebastián Alberto Grillo (UAA)

Quantum Computing

August 19, 2019 1 / 20

Query Models

- 2 The Fourier expansion over Boolean functions
- 3 A classical simulation for functions on the Boolean cube
- 4 Bounding theorems

5 An application

- We want to compute a Boolean function.
- The depth of the tree represents the complexity.
- A randomized tree is a probabilistic distribution over deterministic trees.

- The states of our computer are described by unit vectors in a Hilbert space *H*, whose basis is |*i*⟩ |*j*⟩, where *i* ∈ {0, 1, ..., *n*} and *j* ∈ {1, ..., *m*}.
- We have a set of unitary operators $\{U_i\}$ over \mathcal{H} .
- We denote a query operator O_x , such that $O_x |i\rangle |j\rangle = (-1)^{x_i} |i\rangle |j\rangle$, where $x \equiv x_0 x_1 \cdots x_n$ is the input, and $x_0 \equiv 0$.

- The initial state of the algorithm is $|0\rangle |0\rangle$.
- The final state of the algorithm over input x is defined as $|\Psi_x^f\rangle = U_t O_x U_{t-1} ... O_x U_0 |0\rangle |0\rangle.$
- We denote a query operator O_x , such that $O_x |i\rangle |j\rangle = (-1)^{x_i} |i\rangle |j\rangle$, where $x \equiv x_0 x_1 \cdots x_n$ is the input, and $x_0 \equiv 0$.

CSOP

An indexed set of pairwise orthogonal projectors $\{P_z : z \in T\}$ is called a Complete Set of Orthogonal Projectors if it satisfies

$$\sum_{z \in T} P_z = I_{\mathcal{H}}.$$
 (1)

- The probability of obtaining the output $z \in T$ is $\pi_{z}(x) = \left\|P_{z}\left|\Psi_{x}^{f}\right\rangle\right\|^{2}$.
- An algorithm computes a function $f: D \to T$ within error ε if $\pi_{f(x)}(x) \ge 1 \varepsilon$ for all input $x \in D \subset \{0, 1\}^n$.

We consider the Fourier basis for the vector space of all functions $f: \{0,1\}^n \to \mathbb{R}$ given by the functions

$$\chi_b: \{0,1\}^n \to \{1,-1\},\$$

such that $\chi_b(x) = (-1)^{b \cdot x}$ for $b \in \{0, 1\}^n$ and $b \cdot x = \sum_i b_i x_i$. This family contains a constant function that we denote as $\chi_0 = 1$.

Any function $f:\{0,1\}^n \to \mathbb{R}$ has a unique representation as a linear combination

$$f = \sum_{b \in \{0,1\}^n} \alpha_b \chi_b. \tag{2}$$

1-norm

we denote the Fourier 1-norm of f as

$$L(f) = \sum_{b \in \{0,1\}^n} |\alpha_b|.$$
(3)

Degree

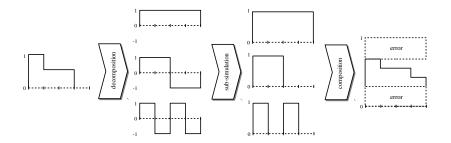
Another measure is the degree of f, which is defined as

$$\deg\left(f\right) = \max_{|b|} \left\{b : \alpha_b \neq 0\right\}.$$
(4)

-

3

- Any output probability can be decomposed in functions χ_b .
- We define a classical simulation for each χ_b .



- *R*_ε(*f*) denotes the minimum number of queries that are necessary for computing *f* within error ε by a randomized decision tree.
- π₁(x) is the probability of a quantum algorithm returning output 1 for a given input x.

Theorem

Consider $D \subset \{0,1\}^n$ and a function $f : D \to \{0,1\}$ that is computed within error $\varepsilon > 0$ and t queries, by a quantum query algorithm. If we define

$$F_{\varepsilon}(l) = \left\lceil \frac{-16\ln(\varepsilon)(1+l)(1+l-\varepsilon)}{(1-2\varepsilon)^2} \right\rceil,$$
(5)

then

$$\frac{R_{\varepsilon}(f)}{t} \leq F_{\varepsilon}(L(\pi_1)).$$
(6)

3

Theorem

Consider $D \subset \{0,1\}^n$ and a function $f : D \to \{0,1\}$ that is ε -approximated by a polynomial $p : \mathbb{R}^n \to \mathbb{R}$. If deg $(p) \leq 2t$, then

$$\frac{R_{\varepsilon}(f)}{2t} \le F_{\varepsilon}(L(\rho)).$$
(7)

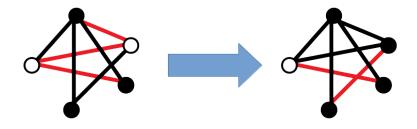
3

A (10) A (10)

A partial Boolean function f is computable by a 1-query quantum algorithm with error bounded by $\epsilon < 1/2$ iff f can be approximated by a degree-2 polynomial with error bounded by $\epsilon' < 1/2$.

- The Fourier spectrum is composed by Walsh functions of the form $\chi(x) = -1^{(ax_i+bx_j)}$.
- Each Walsh function is affected by at most two values of the input x.

1-query algorithms as weighted dynamic graphs



Sebastián Alberto Grillo (UAA)

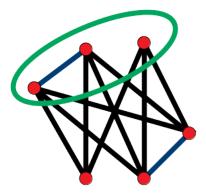
August 19, 2019 16 / 20

How to maximize L-1 norm on graph based quantum query algorithms

- Low difference between weights.
- Minimizing the upper-bound value of the sum weight for every vertex and configuration.

An special case

Consider a regular graph with the following property: The edges of the graph intersect almost half of the edges of any complete bipartite graph that has the same vertices.



- Weighted graphs are an alternative representation for 1-query quantum algorithms.
- Such representation gives a direct upper bound for quantum speed up over a similar classical algorithm.

The End

- ∢ ≣ →

Image: A matrix and a matrix

2