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Decision trees

We want to compute a Boolean function.

The depth of the tree represents the complexity.

A randomized tree is a probabilistic distribution over deterministic
trees.
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The quantum query model I

The states of our computer are described by unit vectors in a Hilbert
space H, whose basis is |i〉 |j〉, where i ∈ {0, 1, .., n} and j ∈ {1, ..,m}.
We have a set of unitary operators {Ui} over H.

We denote a query operator Ox , such that Ox |i〉 |j〉 = (−1)xi |i〉 |j〉,
where x ≡ x0x1 · · · xn is the input, and x0 ≡ 0.
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The quantum query model II

The initial state of the algorithm is |0〉 |0〉.
The final state of the algorithm over input x is defined as∣∣Ψf

x

〉
= UtOxUt−1...OxU0 |0〉 |0〉.

We denote a query operator Ox , such that Ox |i〉 |j〉 = (−1)xi |i〉 |j〉,
where x ≡ x0x1 · · · xn is the input, and x0 ≡ 0.
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The quantum query model III

CSOP

An indexed set of pairwise orthogonal projectors {Pz : z ∈ T} is called a
Complete Set of Orthogonal Projectors if it satisfies∑

z∈T
Pz = IH. (1)

The probability of obtaining the output z ∈ T is

πz (x) =
∥∥Pz

∣∣Ψf
x

〉∥∥2
.

An algorithm computes a function f : D → T within error ε if
πf (x) (x) ≥ 1− ε for all input x ∈ D ⊂ {0, 1}n.
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The Fourier basis I

We consider the Fourier basis for the vector space of all functions
f : {0, 1}n → R given by the functions

χb : {0, 1}n → {1,−1} ,

such that χb(x) = (−1)b·x for b ∈ {0, 1}n and b · x =
∑

i bixi . This family
contains a constant function that we denote as χ0 = 1.
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The Fourier basis II

Any function f : {0, 1}n → R has a unique representation as a linear
combination

f =
∑

b∈{0,1}n
αbχb. (2)
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Metrics

1-norm

we denote the Fourier 1-norm of f as

L (f ) =
∑

b∈{0,1}n
|αb| . (3)

Degree

Another measure is the degree of f , which is defined as

deg (f ) = max
|b|
{b : αb 6= 0} . (4)
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The intuition

Any output probability can be decomposed in functions χb.

We define a classical simulation for each χb.
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Notation

Rε (f ) denotes the minimum number of queries that are necessary for
computing f within error ε by a randomized decision tree.

π1(x) is the probability of a quantum algorithm returning output 1 for
a given input x .
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First Bound

Theorem

Consider D ⊂ {0, 1}n and a function f : D → {0, 1} that is computed
within error ε > 0 and t queries, by a quantum query algorithm. If we
define

Fε (l) =

⌈
−16 ln (ε) (1 + l) (1 + l − ε)

(1− 2ε)2

⌉
, (5)

then
Rε (f )

t
≤ Fε (L (π1)) . (6)
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Second Bound

Theorem

Consider D ⊂ {0, 1}n and a function f : D → {0, 1} that is
ε-approximated by a polynomial p : Rn → R. If deg (p) ≤ 2t, then

Rε (f )

2t
≤ Fε (L (p)) . (7)
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A characterization between degree and query complexity.

A partial Boolean function f is computable by a 1-query quantum
algorithm with error bounded by ε <1/2 iff f can be approximated by a
degree-2 polynomial with error bounded by ε′ <1/2.
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Fourier analysis of degree-2 polynomials.

The Fourier spectrum is composed by Walsh functions of the form

χ (x) = −1(axi+bxj).

Each Walsh function is affected by at most two values of the input x .
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1-query algorithms as weighted dynamic graphs
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Graphs that maximize L-1 norm

How to maximize L-1 norm on graph based quantum query algorithms

Low difference between weights.

Minimizing the upper-bound value of the sum weight for every vertex
and configuration.
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An special case

Consider a regular graph with the following property: The edges of the
graph intersect almost half of the edges of any complete bipartite graph
that has the same vertices.
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Conclusions

Weighted graphs are an alternative representation for 1-query
quantum algorithms.

Such representation gives a direct upper bound for quantum speed up
over a similar classical algorithm.
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The End
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