Introduction 00 The lambda-calculu: 000000000 Adding linear combinations 00000 A unitary linear-algebraic lambda-calculus 00000000

Programming unitary operators in a linear-algebraic typed lambda-calculus

Benoît Valiron, Alejandro Díaz-Caro Mauricio Guillermo & Alexandre Miquel

September 6th, 2018 - 6ta jornada LoCIC — Buenos Aires

ntroduction	The lambda-calculus	Adding linear combinations	A unitary linear-algebraic lambda-calculus
0	00000000	00000	0000000
Aim of the	work		

- Present the semantics of a linear algebraic lambda-calculus based on a realizability model that captures a notion of unitarity (ℓ_2 -norm)
 - lambda-calculus = functional programming (see next slides)
 - algebraic = linear combinations of terms (to represent superpositions of values / superpositions of programs)
 - linear = all functions are linear by construction
- Main novelty: The calculus is designed from a realizability model (a notion coming from logic, Kleene 1945)
- A language to represent:
 - classical values, classical programs
 - superposition of values, superposition of programs
 - classical programs computing superposition of values
 - superposition of programs computing superposition of values

• A semantics for quantum programming languages (Quipper)

Introduction	
0.	

Adding linear combinations 00000 A unitary linear-algebraic lambda-calculus 00000000

Plan

2 The lambda-calculus

- 3 Adding linear combinations
- A unitary linear-algebraic lambda-calculus

Introd	uction
00	

Adding linear combinations 00000 A unitary linear-algebraic lambda-calculus 00000000

Plan

2 The lambda-calculus

- 3 Adding linear combinations
- 4 A unitary linear-algebraic lambda-calculus

- Introduced by Alonzo Church (1903–1995) in the 1930s ... to solve Hilbert's *Entscheidungsproblem* (Decision problem)
- Minimal functional programming language. Only:
 - 3 syntactic constructs (variable, λ -abstraction, application)
 - 1 computation rule (β -reduction)
- Actually, the first programming language ever! if we do not count Charles Babbage's (partial) attempt
- Same computation strength as Turing machines Turing (1912-1954), who had invented his abstract machines independently, became Church's PhD student in Princeton
- The λ -calculus is now the core of all functional programming languages: Lisp, Scheme, Erlang, OCaml, Haskell, F#, etc.

- Terms of the pure λ -calculus (notation: *s*, *t*, *u*, etc.)
 - s, t, u ::= x(variable) $| \lambda x \cdot s$ (λ -abstraction)| t u(application)
- Computation rule: $(\lambda x \cdot s) u \succ s[x := u]$ (β -reduction)
- Examples:
 - $(\lambda x . x) y \gg y$
 - $(\lambda x . x) (\lambda x . x) \gg \lambda x . x$
 - $(\lambda x.xx)(\lambda x.x) \gg (\lambda x.x)(\lambda x.x) \gg \lambda x.x$
 - $(\lambda x.xx)(\lambda x.xx) \succ (\lambda x.xx)(\lambda x.xx) \succ \cdots$

Introduction	The lambda-calculus	Adding linear combinations	A unitary linear-algebraic lambda-calculus
00	00000000	00000	0000000
Adding typ	es		

- To avoid undesirable phenomena (self-application, non termination, etc.) it is natural to only consider well-typed λ -terms
- A possible algebra of types (notation: A, B, C, etc.) is:

A, B, C ::= $\mathbb{U} \mid A \rightarrow B \mid A \times B \mid A + B$

 $\mathbb U$ is the unit type, from which we can form the type of Booleans $\ \mathbb B:=\mathbb U+\mathbb U$

• Well-typedness of terms is enforced using a typing judgment

 $\Gamma \vdash t : A$ ("in context Γ , t has type A")

where

- Γ is a typing context, of the form $\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$
- *t* is a term (possibly depending on *x*₁,...,*x*_n)
- A is a type

ntroduction DO	The lambda-calculus 0000●0000	Adding linear combinations	A unitary linear-algebraic lambda-calculu 00000000
The fund	ction type $A ightarrow$	B	
a 1	R is the type of f	unctions from 1 to R	
• A	$\rightarrow D$ is the type of h		
	Construction : λ	X.5	$(\lambda ext{-abstraction})$
	Destruction : t	u	(application)
• Co	omputation:		
	$(\lambda x . s)$	$u \succ s[x := u]$	(eta-reduction)
• Ту	ping rules:		

$$\frac{\Gamma, x : A \vdash s : B}{\Gamma \vdash \lambda x . s : A \rightarrow B}$$
$$\frac{\Gamma \vdash t : A \rightarrow B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

Adding linear combinations

A unitary linear-algebraic lambda-calculus 00000000

The Cartesian product $A \times B$

- $A \times B$ is the type of pairs (u, v), where u : A and v : B
 - Construction:(u, v)(ordered pair)Destruction:let (x, y) = t in s("let" for pairs)

• Computation:

let
$$(x, y) = (u, v)$$
 in $s \succ s[x := u, y := v]$

• Typing rules:

$$\frac{\Gamma \vdash u : A \quad \Gamma \vdash v : B}{\Gamma \vdash (u, v) : A \times B}$$

$$\frac{\Gamma \vdash t : A \times B \quad \Gamma, x : A, y : B \vdash s : C}{\Gamma \vdash \text{let} (x, y) = t \text{ in } s : C}$$

Adding linear combinations

A unitary linear-algebraic lambda-calculus 00000000

The direct sum A + B

• A + B is the direct sum (disjoint union) of types A and B

Construction:inl(u), inr(v)Destruction: $match t \{inl(x) \mapsto s_1 \mid inr(y) \mapsto s_2\}$

• Computation:

 $\begin{array}{ll} \texttt{match inl}(u) \; \{\texttt{inl}(x) \mapsto s_1 \; | \; \texttt{inr}(y) \mapsto s_2 \} & \rightarrowtail & s_1[x := u] \\ \texttt{match inr}(v) \; \{\texttt{inl}(x) \mapsto s_1 \; | \; \texttt{inr}(y) \mapsto s_2 \} & \rightarrowtail & s_2[y := v] \end{array}$

• Typing rules:

$$\frac{\Gamma \vdash u : A}{\Gamma \vdash \operatorname{inl}(u) : A + B} \qquad \frac{\Gamma \vdash v : B}{\Gamma \vdash \operatorname{inr}(v) : A + B}$$
$$\frac{\Gamma \vdash t : A + B \qquad \Gamma, x : A \vdash s_1 : C \qquad \Gamma, y : B \vdash s_2 : C}{\Gamma \vdash \operatorname{match} t \{\operatorname{inl}(x) \mapsto s_1 \mid \operatorname{inr}(y) \mapsto s_2\} : C}$$

Introduct 00	ion The lambda-calculus 000000000	Adding linear combinations	A unitary linear-algebraic lambda-calculus 00000000
The	e unit type $\mathbb U$		
	$ullet$ ${\mathbb U}$ is the singleton ty	pe (inhabited by a dumi	my value)
	Construction:	*	(dummy value)
	Destruction:	t; s	(sequence)
	• Computation: *	s ≻≻ s	
	 Typing rules: 		
	Γ⊢ *	$: \mathbb{U} \qquad \frac{\Gamma \vdash t : \mathbb{U} \qquad \Gamma}{\Gamma \vdash t; s : t}$	$\frac{1}{C}$

 \bullet Combining ${\mathbb U}$ with +, we define the type of Booleans:

$$\begin{array}{rcl} \mathbb{B} &:= & \mathbb{U} + \mathbb{U} \\ & \texttt{tt} &:= & \texttt{inl}(*) \\ & \texttt{ff} &:= & \texttt{inr}(*) \\ \texttt{if } t \{s_1 \mid s_2\} &:= & \texttt{match } t \{\texttt{inl}(x) \mapsto x; s_1 \mid \texttt{inr}(y) \mapsto y; s_2 \} \end{array}$$

ion The lar 0000

The lambda-calculus

Adding linear combinations

A unitary linear-algebraic lambda-calculus 00000000

The simply-typed λ -calculus

- Equipped with a type system such as the one presented above, the λ -calculus enjoys excellent properties:
 - Computation is ultimately deterministic: the computed value does not depend on evaluation strategy (already holds in the untyped case)
 - Types are preserved throughout computations
 - All well-typed computations terminate
- The simply-typed $\lambda\text{-calculus}$ has also good semantics:
 - set-theoretic semantics, denotational semantics, categorical semantics, realizability semantics (cf later)
- Strong relationship with logic:

Introduction	
00	

Adding linear combinations •0000 A unitary linear-algebraic lambda-calculus 00000000

Plan

Introduction

2 The lambda-calculus

4 unitary linear-algebraic lambda-calculus

uction	The lambda-calcu
	000000000

Adding linear combinations 0000

A unitary linear-algebraic lambda-calculus

Aim of the calculus

- **Intuitions:** Terms of the simply-typed λ -calculus represent classical programs computing classical values
- We now want to represent
 - superposition of values
 - classical programs computing superposition of values
 - superposition of programs computing superposition of values
- For that, we extend the λ -calculus with linear combinations

 $\therefore = x \mid \lambda x \cdot t \mid st \mid \cdots \mid \vec{0} \mid t + u \mid \alpha \cdot t$ s,t

Beware!

$$\lambda x \cdot \left(\frac{1}{\sqrt{2}} \cdot \operatorname{tt} + \frac{1}{\sqrt{2}} \cdot \operatorname{ff}\right) \quad \neq \quad \frac{1}{\sqrt{2}} \cdot (\lambda x \cdot \operatorname{tt}) + \frac{1}{\sqrt{2}} \cdot (\lambda x \cdot \operatorname{ff})$$

• We also would like the type system to capture unitary operators (in an infinite dimensional space of values)

troduction	The lambda-calculus	Adding linear combinations
0	00000000	00000

A unitary linear-algebraic lambda-calculus 00000000

Linear combinations and non termination

• Problem: Linear combinations badly interact with non termination

Let:
$$Y_t := (\lambda x \cdot t + xx)(\lambda x \cdot t + xx)$$
 (t fixed term)
 $\Rightarrow t + Y_t$

Hence: $\vec{0} = Y_t - Y_t \implies (t + Y_t) - Y_t = t + \vec{0} = t$

 \Rightarrow Confluence is lost!

(on untyped terms)

• Several solutions have been considered to fix this problem:

۰	Restricting the rules of evaluation	[Arrighi & Dowek '08, '17]
٠	Working with positive coefficients only	[Vaux '09]
•	Restricting to well-typed terms	[Arrighi & Díaz-Caro '11, '12]
•	Working with weak linear combinations	[Valiron '13]

Introduction	The lambda-calculus
00	00000000

Adding linear combinations

A unitary linear-algebraic lambda-calculus 00000000

Weak vector spaces

Definition (Weak vector space)

[Valiron '13]

A weak C-vector space is a commutative monoid $(V, +, \vec{0})$ equipped with a scalar multiplication $(\cdot) : \mathbb{C} \times V \to V$ such that

$$1 \cdot u = u \qquad (\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$$

$$\alpha \cdot (\beta \cdot u) = \alpha \beta \cdot u \qquad \alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$$

for all $u, v \in V$, $\alpha, \beta \in \mathbb{C}$

- Intuition: Weak vector space = vector space whose additive structure is not an abelian group, but a commutative monoid
 - \Rightarrow vectors do not have an opposite, in general
- In a weak vector space:

$$lpha \cdot ec{0} \ = \ ec{0}, \qquad ext{but} \qquad 0 \cdot u \
eq \ ec{0} \ \ ext{and} \ \ (-1) \cdot u \
eq \ -u$$

Note that $(-1) \cdot u + u = (-1) \cdot u + 1 \cdot u = (-1+1) \cdot u = 0 \cdot u \neq \vec{0}$

• Weak vector spaces already occur in mathematics!

Observation: If V and W are (ordinary) \mathbb{C} -vector spaces, then the set of all unbounded operators from V to W is a weak \mathbb{C} -vector space

- The category of weak vector spaces has excellent properties:
 - It has all limits and all colimits (it is bicomplete)
 - It is monoidal closed ($\otimes \dashv \multimap$)
 - It has all free objects: weak linear combinations, a.k.a. distributions (In a distribution, summands of the form $0 \cdot u$ do not cancel)
- We should not think of algebraic programs as bounded operators, not even as totally defined operators, but as abstract unbounded operators (neither total nor continuous)

Intro	du	cti	on
00			

Adding linear combinations

A unitary linear-algebraic lambda-calculus •0000000

Plan

Introduction

2 The lambda-calculus

3 Adding linear combinations

Intro	du	cti	on
00			

Adding linear combinations

A unitary linear-algebraic lambda-calculus 0000000

Syntax of the calculus

Pure values	<i>v</i> , <i>w</i> ::=	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
Pure terms	s,t ::=	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$)\mapsto ec{s_2}\}$
Value distr.	\vec{v}, \vec{w} ::=	$\vec{0} \mid v \mid \vec{v} + \vec{w} \mid \alpha \cdot \vec{v}$	$(\alpha \in \mathbb{C})$
Term distr.	\vec{s}, \vec{t} ::=	$\vec{0} \mid t \mid \vec{s} + \vec{t} \mid \alpha \cdot \vec{t}$	$(\alpha \in \mathbb{C})$

- Term/value distributions are endowed with the equational theory of distributions (summands of the form 0 · t do not cancel)
- Syntactic constructs are extended by linearity:

 $\begin{array}{ll} (\vec{v}, \vec{w}), & \vec{s} \ \vec{t} & \text{are bilinear} \\ \texttt{inl}(\vec{v}), & \texttt{inl}(\vec{v}) & \text{are linear in } \vec{v} \\ \vec{t}; \vec{s}, & \texttt{let} \ (x, y) = \vec{t} \ \texttt{in} \ \vec{s}, \\ \texttt{match} \ \vec{t} \ \{\texttt{inl}(x) \mapsto \vec{s_1} \mid \texttt{inr}(y) \mapsto \vec{s_2}\} & \texttt{are linear in } \vec{t} \end{array}$

Introduction	The lambda-calculus	Adding linear combinations	A unitary linear-algebraic lambda-calculus
00	00000000	00000	0000000
Evaluation			

• Evaluation is defined from the 'atomic' rules

$$\begin{array}{rcl} (\lambda x \cdot \vec{t}) v & \rightarrowtail & \vec{t} [x := v] \\ & *; \vec{s} & \rightarrowtail & \vec{s} \end{array}$$

$$\begin{array}{rcl} \texttt{let} (x, y) = (v, w) \texttt{ in } \vec{s} & \rightarrowtail & \vec{s} [x := v, y := w] \end{array}$$

$$\begin{array}{rcl} \texttt{match inl}(v) \{\texttt{inl}(x) \mapsto \vec{s_1} \mid \texttt{inr}(y) \mapsto \vec{s_2}\} & \rightarrowtail & \vec{s_1} [x := v] \end{array}$$

$$\begin{array}{rcl} \texttt{match inr}(v) \{\texttt{inl}(x) \mapsto \vec{s_1} \mid \texttt{inr}(y) \mapsto \vec{s_2}\} & \rightarrowtail & \vec{s_2} [y := v] \end{array}$$

and then extended by linearity (as a relation)

• Call-by-basis strategy = call-by-value + all functions are linear

$$(\lambda x \cdot \vec{s})\vec{t} \implies (\lambda x \cdot \vec{s}) \left(\sum_{j} \beta_{j} \cdot \mathbf{v}_{j} \right) = \sum_{j} \beta_{j} \cdot (\lambda x \cdot \vec{s}) \mathbf{v}_{j} \implies \sum_{j} \beta_{j} \cdot \vec{s} [x := \mathbf{v}_{j}]$$

Theorem: Evaluation is confluent

(on untyped terms)

Note: Only holds because we are using distributions (= weak linear combinations)

Intro	du	cti	on	
00				

Adding linear combinations 00000 A unitary linear-algebraic lambda-calculus

The realizability model

- The weak vector space \vec{V} of closed value distributions is equipped with the scalar product $\langle \vec{v} \mid \vec{w} \rangle$ and the ℓ_2 -seminorm $\|\vec{v}\|$
- \bullet All constructions are performed in the unit sphere $\mathcal{S}_1 \subseteq \vec{\mathrm{V}}$

Definition (Types)

A type is a notation A together with a set of unit vectors $\llbracket A \rrbracket \subseteq \mathcal{S}_1$

• Examples:

- $\bullet\,$ The type $\mathbb B$ (of Booleans) is defined by $[\![\mathbb B]\!]:=\{\texttt{tt},\texttt{ff}\}$
- To each type A, we associate the type #A (unitary span of A) that is defined by [[#A]] := span([[A]]) ∩ S₁
- So that we can form the type $\#\mathbb{B}$ (of unitary Booleans)
- To each type *A*, we associate the realizability predicate $\vec{t} \Vdash A :\equiv \exists \vec{v} \in \llbracket A \rrbracket, \ \vec{t} \rightarrowtail \vec{v}$

 $(\vec{t} \text{ evaluates to a value distribution of type } A)$

Intro	du	cti	on
00			

Adding linear combinations

A unitary linear-algebraic lambda-calculus

A simple algebra of types

Types
$$A, B ::= \mathbb{U} | bA | \#A | A \times B$$
 $| A + B | A \rightarrow B | A \Rightarrow B$ Abbrev.: $\mathbb{B} := \mathbb{U} + \mathbb{U}, A \otimes B := \#(A \times B), A \oplus B := \#(A + B)$

- The unit type \mathbb{U} is defined by $\llbracket \mathbb{U} \rrbracket := \{*\}$
- The basis $\flat A$ of a type A is defined by

 $\llbracket \flat A \rrbracket :=$ smallest $X \subseteq V$ s.t. $\llbracket A \rrbracket \subseteq$ span(X)

• The unitary span #A of a type A is defined by

$$\llbracket \# A \rrbracket := \operatorname{span}(\llbracket A \rrbracket) \cap \mathcal{S}_1$$

• The Cartesian product $A \times B$ of two types A and B is defined by $\llbracket A \times B \rrbracket := \{ (\vec{v}, \vec{w}) : \vec{v} \in \llbracket A \rrbracket, \vec{w} \in \llbracket B \rrbracket \}$

n	The lambda-
	000000

Adding linear combinations

A unitary linear-algebraic lambda-calculus

A simple algebra of types

Types
$$A, B$$
 $::=$ \mathbb{U} $| bA |$ $\#A |$ $A \times B$ $| A + B |$ $A \to B |$ $A \Rightarrow B$ Abbrev.: \mathbb{B} $:=$ $\mathbb{U} + \mathbb{U},$ $A \otimes B$ $:=$ $\#(A \times B),$ $A \oplus B$ $:=$ $\#(A + B)$

- The direct sum A + B of two types A and B is defined by $\llbracket A + B \rrbracket := \{ \operatorname{inl}(\vec{v}) : \vec{v} \in \llbracket A \rrbracket \} \cup \{ \operatorname{inr}(\vec{w}) : \vec{w} \in \llbracket B \rrbracket \}$
- The pure function space $A \rightarrow B$ from A to B is defined by:

$$\llbracket A \to B \rrbracket := \{ \lambda x \, . \, \vec{t} : \forall \vec{v} \in \llbracket A \rrbracket, \ \vec{t} \langle x := \vec{v} \rangle \Vdash B \}$$

• The unitary function space $A \Rightarrow B$ from A to B is defined by:

$$\llbracket A \Rightarrow B \rrbracket := \left\{ \left(\sum_{i=1}^{n} \alpha_{i} \cdot \lambda x \cdot \vec{t}_{i} \right) \in \mathcal{S}_{1} : \\ \forall \vec{v} \in \llbracket A \rrbracket, \left(\sum_{i=1}^{n} \alpha_{i} \cdot \vec{t}_{i} \langle x := \vec{v} \rangle \right) \Vdash B \right\}$$

Introduction 00 The lambda-calculus 000000000

Adding linear combinations 00000 A unitary linear-algebraic lambda-calculus 00000000

Properties of the semantic type system

• Recall that: $\vec{t} \Vdash A$:= $\exists \vec{v} \in \llbracket A \rrbracket, \ \vec{t} \succ \vec{v}$

Theorem (Representation of unitary functions)

Let \vec{t} be a program distribution

- $\vec{t} \Vdash \sharp \mathbb{B} \to \sharp \mathbb{B}$ iff t computes a pure function that represents a unitary operator from \mathbb{C}^2 to \mathbb{C}^2
- *i* ⊢ #B ⇒ #B iff *t* computes a unitary function distribution that represents a unitary operator from C² to C²
 - From the realizability relation, we extract a type system based on typing rules that are correct w.r.t. the semantics
 - This system is an extension of the simply-typed λ -calculus (that now represents the classical part of the language)
 - Moreover, the new type constructs (bA, #A, etc.) allow to capture linearity constraints, and in particular: unitary functions

Introduction 00 The lambda-calculu

Adding linear combinations

A unitary linear-algebraic lambda-calculus

A possible type system

$$\frac{\neg x: A \vdash x: A}{r: A \vdash x: A} (Axiom) \qquad \frac{\Gamma \vdash \vec{t}: A \quad A \leq A'}{\Gamma \vdash \vec{t}: A'} (Sub)$$

$$\frac{\Gamma, x: A \vdash \vec{t}: B \quad b\Gamma \simeq \Gamma}{\Gamma \vdash \lambda x. \vec{t}: A \to B} (PureLam) \qquad \frac{\Gamma, x: A \vdash \vec{t}: B}{\Gamma \vdash \lambda x. \vec{t}: A \Rightarrow B} (UnitLam)$$

$$\frac{\Gamma \vdash \vec{s}: A \Rightarrow B \quad \Delta \vdash \vec{t}: A}{\Gamma, \Delta \vdash \vec{s}\vec{t}: B} (App)$$

$$\frac{\Gamma \vdash \vec{t}: U \quad \Delta \vdash \vec{s}: A}{\Gamma, \Delta \vdash \vec{t}; \vec{s}: A} (Seq) \qquad \frac{\Gamma \vdash \vec{t}: \#U \quad \Delta \vdash \vec{s}: \#A}{\Gamma, \Delta \vdash \vec{t}; \vec{s}: \#A} (SeqSharp)$$

$$\frac{\Gamma \vdash \vec{v}: A \quad \Delta \vdash \vec{w}: B}{\Gamma, \Delta \vdash (\vec{v}, \vec{w}): A \times B} (Pair) \qquad \frac{\Gamma \vdash \vec{t}: A \times B \quad \Delta, x: A, y: B \vdash \vec{s}: C}{\Gamma, \Delta \vdash Iet (x, y) = \vec{t} \text{ in } \vec{s}: C} (LetPair)$$

$$\frac{\Gamma \vdash \vec{t}: B \quad bA \simeq A}{\Gamma, x: A \vdash \vec{t}: B} (Weak) \qquad \frac{\Gamma, x: A, y: A \vdash \vec{t}: B \quad bA \simeq A}{\Gamma, x: A \vdash \vec{t}[y:=x]: B} (Contr)$$

+ many other typing rules / subtyping rules