Quantum Algorithms for Multiobjective Optimization

Marcos Villagra

Núcleo de Investigación y Desarrollo Tecnológico (NIDTEC) Facultad Politécnica Universidad Nacional de Asunción

Núcleo de Investigación y Desarrollo Tecnológico (NIDTEC)

- Computational Optimization
- Applied Mathematics and Scientific Computation
- Bioinformatics

- Biomaterials
- Software Engineering
- Theoretical Computer Science

Theoretical Computer Science Group at NIDTEC

Professors

- Eduardo Canale (UNA/Udelar)
- Marcos Villagra

Doctor students

- Cristhian Martínez (algebraic complexity)
- Pedro Villagra (algebraic complexity)

Master students

- Marcos Ibarra (quantum computing)
- Fabricio Mendoza (espectral algorithms)
- Sergio Mercado (espectral algorithms)

Undergrad students

Tadashi Akagi (tilings and graph theory)

Research

- Algorithms
- Graph theory
- Computational Complexity
- Quantum computing

This talk is about...

How to solve Multiobjective Optimization Problems using a Quantum Computer

Why?

In the early days it was very difficult to design quantum algorithms for optimization problems for most quantum computing models.

There were, however, papers with empirical results, like

- Crhistoph Dürr, Peter Høyer. A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1999)
- Baritompa et al. **Grover's quantum algorithm applied to global optimization.** SIAM Journal on Optimization 15(4), 2005.

Quantum adiabatic computing [Farhi et al. 2000], however, is made for optmization problems.

Why? (cont'd)

More recently,

1- A. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for solving linear systems of equations. arXiv:0811.3171.

2- F. Brandao, K. Svore. **Quantum speed-ups for semidefinite programming.** arXiv:1609.05537.

3- I. Kerenidis, A. Prakash. A quantum interior point method for LPs and DSPs. arXiv:1808.09266

Quantum Optimization

Applications in:

- 1- Big data.
- 2- Artificial Intelligence
- 3- Machine Learning
- 4- Engineering

Anything that needs to be optimized!

But what about Multiobjective Optimization Problems?

Outline

- Multiobjective Combinatorial Optimization
- Empirical results using an adaptive strategy
- Theoretical results using quantum adiabatic computing
- Concluding remarks and open problems

Outline

- Multiobjective Combinatorial Optimization
- Empirical results using an adaptive strategy
- Theoretical results using quantum adiabatic computing
- Concluding remarks and open problems

Multiobjective Optimization

Given solutions x and y x < y iff $f_1(x) \le f_1(y)$ and $f_2(x) \le f_2(y)$

The set of Pareto-optimal solutions is the set of minimal points.

Multiobjective Combinatorial Optimization or MCO

The domain of each objective function is finite.

Both objective functions above take values only on a finite number of points.

Multiobjective Combinatorial Optimization or MCO (cont'd)

An MCO with **d** objectives

Objective function

$$f(x) = (f_1(x), \cdots, f_d(x))$$

Problem: Find a non-trivial Pareto-optimal solution

The optimal solution of each f_i is a trivial Pareto-optimal solution

Each trivial solution can be found by optimizing each objective individually!

Multiobjective Combinatorial Optimization or MCO (cont'd)

Some definitions

Equivalent solutions: x and y are equivalent iff $(f_1(x),...,f_d(x)) = (f_1(y),...,f_d(y))$

Collision-free MCO: for each f_i and each pair of solutions x and y, it holds that $|f_i(x) - f_i(y)| > \lambda$ for some positive real λ .

Linearization of an MCO

Given an objective function $f(x) = (f_1(x), \dots, f_d(x))$

A linearization of f is a linear combination between each f_i such that

$$\langle f(x), w \rangle = w_1 f_1(x) + \dots + w_d f_d(x)$$

where w_1 +.....+ w_d =1 and each $w_i \in [0, 1]$.

Lemma. For each w there exists x such that x is Pareto-optimal and $\langle w, f(x) \rangle$ is minimum.

A solution x is a supported solution if x is a minimum of $\langle w, f(x) \rangle$ for some w;

otherwise, x is **non-supported**.

Classical Methods for Multiobjective Optimization

1- Heuristics

- > Designed for a specific problem.
- Greedy algorithms, local optimizers, etc.

2- Metaheuristics

- Problem-independent.
- > Evolutionary algorithms, ant colony optimization, etc.

Outline

- Multiobjective Combinatorial Optimization
- Empirical results using an adaptive strategy
- Theoretical results using quantum adiabatic computing
- Concluding remarks and open problems

Grover's Search Algorithm

Grover's algorithm finds K marked items out of a set of N items in time $O(\sqrt{N/K})$

Geometrically, this corresponds to a rotation

r is the number of times the Grover operator G is used.

Grover's Adaptive Search (GAS)*

Dürr and Høyer's heuristic for the selecting the rotation number

- 1. Let k=1.
- 2. Repeat
 - i. Randomly choose r_k from [k].
 - ii. Grover search with r_k rotations.
 - iii. If a solution is found, update threshold y and set k=1.
 - iv. Else, let $k=min\{\lambda k, \sqrt{N}\}$.

* Baritompa, Bulger, Wood. Grover's quantum algorithm applied to global optimization. SIAM Journal on Optimization 15(4):1170-1184, 2005.

Multiobjective Grover Adaptive Search (MOGAS)

GAS with Dürr and Høyer's can be naturally extended to multiobjective problems.

We studied two types of oracles:

Remember a current known set of non-dominated solutions Y

Initial Results

◆ We compared MOGAS against NSGA-II.

Run tests on structured instances and random instances of bi-objective problems.

• We computed the hypervolume and the number of objective functions evaluations.

is a measure of how close the set of non-dominated solutions are to the real set of Pareto-optimal solutions.

All tests run with 10 qubits.

Initial Results (cont'd)

Random Instance

Initial Results (cont'd)

Structured Instance

Work to be done

◆ Test more types of oracles.

◆ Try more heuristics.

Results in Proceedings of FedCSIS 2017 – 10th Workshop on Computational Optimization

Outline

- Multiobjective Combinatorial Optimization
- Empirical results using an adaptive strategy
- Theoretical results using quantum adiabatic computing
- Concluding remarks and open problems

Eigenstates and Energies

Ground state: eigenstate with lowest energy.

Optimization with Hamiltonians

Given an objective function f(x)

$$H = \begin{bmatrix} f(x_1) & & & \\ & \ddots & & \\ & & \ddots & & \\ & & & f(x_n) \end{bmatrix}$$

$$|x\rangle$$
 are eigenstates $f(x)$ are eigenvalues

Problem: find a minimal eigenstate.

Adiabatic Evolution

 $i\hbar \frac{d\psi(t)}{dt} = H(t) |\psi(t)\rangle$

Adiabatic Theorem: [Born and Fock 1928]

$$H(0) \qquad \qquad H(T)$$

Start in $|\psi(0)\rangle$ ground state of $H(0)$
Finisht at $|\psi(T)\rangle$ ground state of $H(T)$
 $T \gg \frac{1}{\min_{t}\{\gamma(t)\}^{2}}$ where $\gamma(t) = E_{1}(t) - E_{0}(t)$ eigenvalue gap

The Quantum Adiabatic Algorithm

- 1. Construct a Hamiltonian H_1 encoding the optimization problem.
- 2. Construct a Hamiltonian H_0 with known ground state.
- 3. With adiabatic evolution, slowly change H_0 into H_1 .

$$H(s) = (1 - s)H_0 + sH_1$$

4. Measure the results.

Quantum Annealers

- 1. Implementations of the quantum adiabatic paradigm, but they are only good for optimization problems.
- 2. Some companies claim they have 1000 qubits quantum annealers.
- 3. They are promising 2000 qubits by this year!

This being true or not, it is still and interesting model of computation.

Main Contribution of this Work

Theorem.

Given any MCO that is **collision-free**. If there are **no equivalent solutions**, then there exists a linearization such that the quantum adiabatic algorithm can find a Pareto-optimal solution in finite time.

If the linearization is chosen appropriately, then the algorithm can find all supported solutions.

Two structural properties of MCOs are required:

(1) Collision-freeness(2) Absence of equivalent solutions

Otherwise we cannot guarantee convergence in finite time

The proof relies on understanding the eigenvalues of the final Hamiltonian H_1 encoding a linearization of an MCO.

The Hamiltonian of an MCO is
$$H_1 = w_1 H_{f_1} + \dots + w_d H_{f_d}$$

where each H_{f_i} encodes objective function f_i .

Final Hamiltonian $H_1 = w_1 H_{f_1} + \dots + w_d H_{f_d}$

The proof relies on understanding the eigenvalues of the final Hamiltonian H_1 encoding a linearization of an MCO.

The Hamiltonian of an MCO is
$$H_1 = w_1 H_{f_1} + \dots + w_d H_{f_d}$$

where each H_{f_i} encodes objective function f_i .

The linearization that is chosen must give a **nondegenerate ground state**.

a unique minimum energy

If the ground state is degenerate, then we can always chose another linearization.

In both cases, we always obtain the same Pareto-optimal solution.

It suffices to prove that the final Hamiltonian H_1 has a non-degenerate ground-state.

$$H_1 = w_1 H_{f_1} + \dots + w_d H_{f_d}$$

The initial Hamiltonian H_0 is already chosen with a non-degenerate ground-state.

If the total Hamiltonian is non-degenerate, we cannot use the quantum adiabatic theorem.

We rely on the quantum adiabatic theorem of Ambainis and Regev [arXiv:quant-ph/0411152]

Approx. factor
$$T \ge \frac{10^5}{\delta^2} \max\left\{\frac{\|H'\|^3}{\lambda^4}, \frac{\|H'\| \cdot \|H''\|}{\lambda^3}\right\}$$
 Eigenvalue gap

Eigenvalue Gap of the Two-Parabolas Problem

Eigenvalue Gap of the Two-Parabolas Problem (cont'd)

Numerical experitments with 7 qubits.

Eigenvalue Gap

---- second smallest eigenvalue α_w

Eigenvalue Gap of the Two-Parabolas Problem (cont'd)

Numerical experitments with 7 qubits.

Logplot of the Eigenvalue Gap

Open Problems

New adiabatic algorithm capable of finding ALL Pareto-optimal solutions.

Mechanism for dealing with equivalent solutions.

Construct an explicit natural MCO instance with polynomial-time convergence.

Please check the full-version at arXiv:1605.03152

for a list of open problems

Outline

- Multiobjective Combinatorial Optimization
- Empirical results using an adaptive strategy
- Theoretical results using quantum adiabatic computing
- Concluding remarks

Concluding Remarks

- 1. We showed initial empiricial results that suggests an "advantage" of an adaptive strategy. However, more test with more qubits are necessary.
- 2. We showed that the adiabatic algorithms can be used to solve MCOs. In that case, we identified two structural properties that any MCO must fulfill:
 - a) collision-freeness, and
 - b) no equivalent solutions.
- 3. First quantum algorithm for multiobjective optimization. It can be implemented in "real-world" quantum annealers.

Thanks for your attention!